
Global Campus Artificial Intelligence Algorithm Elite Competition

Competition 8: AI-Based Prediction of Transition-State Structures in Chemical
Reactions

1. Competition Background

In chemical reaction research, the transition state (TS) structure lies at the energy peak

along the reaction pathway, serving as the “critical bridge” that connects reactants and

products. Its geometric configuration directly determines the activation energy and pathway

selection, making it the core for understanding and controlling reaction mechanisms. However,

in traditional studies, obtaining TS structures heavily relies on expensive quantum chemistry

calculations and researchers’ specialized expertise, which is inefficient and lacks general

applicability. This has become a major bottleneck restricting the automation of reaction

modeling and the intelligent design of chemical processes.

With the broad application of artificial intelligence in scientific research, machine

learning–based methods for transition state prediction are gradually emerging, offering a new

perspective to address this challenge. Recent studies have attempted to reconstruct TS

structures along reaction pathways using deep learning, graph neural networks, and generative

models. Nonetheless, such approaches often suffer from limited generalization, weak

adaptability to complex systems, and high dependence on data, and no widely accepted

standardized solution has yet been established.

This competition focuses on the frontier challenge of “transition state structure

prediction,” combining the latest open-source reaction datasets with three-dimensional

structural representations of reactions. It welcomes participants from diverse interdisciplinary

backgrounds, including algorithms, chemistry, and materials science, with the aim of

promoting the development of efficient, generalizable, and accurate TS prediction algorithms.

This task is not only a fundamental core problem in computational chemistry automation,

green catalyst design, drug discovery, and new materials development, but also carries

significant potential for industrial applications, especially in pharmaceuticals, energy

conversion, and environmental chemistry.

By providing representative and challenging reaction datasets, the competition will

guide participants to explore innovative and generalizable algorithms, further advancing

AI-driven scientific discovery (AI4Science). It will also contribute to cultivating

interdisciplinary talent, driving technological progress across industries, and providing key

support for intelligent molecular design and the modeling of complex reaction systems.

2. Competition Application Scenario

In high-value industries such as drug discovery, green catalysis, energy, and materials

design, understanding and controlling chemical reaction pathways is a core task. Accurate
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prediction of transition state (TS) structures determines whether researchers can efficiently

evaluate activation energies, screen reaction pathways, and design highly selective catalysts.

However, current mainstream methods for TS searching rely heavily on quantum chemical

calculations and expert experience. These approaches not only consume enormous

computational resources but also perform with extremely low efficiency when applied to

large-scale reaction screening tasks, making them unsuitable for the requirements of

high-throughput chemical design.

For example, in designing synthetic routes for drug molecules, pharmaceutical

companies often need to explore hundreds or even thousands of possible reaction pathways

during the screening and optimization of lead compounds. If the TS structure of each pathway

could be rapidly obtained and its energy barrier computed, the efficiency and accuracy of

feasibility screening would be greatly improved, thereby shortening the drug development

cycle. Similarly, in the development of electrocatalytic materials, the stability of key

intermediates on different material surfaces dictates reaction performance, and accurately

predicting the geometric structures of these key intermediates becomes critical to improving

catalyst activity.

The task of transition state structure prediction proposed in this competition addresses

precisely these real-world challenges. By guiding participants to leverage AI algorithms to

extract implicit chemical information between reactants and products and rapidly generate

high-confidence TS structures, this competition aims to promote the practical application of

“AI-assisted reaction pathway search” technologies in industrial R&D and fundamental

scientific research. The task has clearly defined engineering needs, a technically feasible

approach, and wide industrial adaptability, representing a typical example of extending AI

technologies into advanced molecular science applications.

3. Competition Task

The core task of this competition is to develop a machine learning model capable of

predicting the transition state structures of reactions based on the three-dimensional structures

of reactants and products. Participants are required to train their models on the provided

open-source training dataset and accurately predict the TS structures of unknown reactions in

the test set.

Specifically, participants must complete the following tasks:

(1) Data Processing: Extract valid structural information from the open-source reaction

dataset provided by the organizers, including 3D coordinates of reactants, products, and

transition states. Perform data cleaning, normalization, and feature engineering.

(2) Model Construction and Training: Build models based on appropriate machine
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learning algorithms (e.g., graph neural networks, generative models, machine learning

potential energy surfaces) that can infer TS structures from reactant and product structures,

and complete model training.

(3) Transition State Structure Prediction: For the reactant and product structures given

in the test set, use the trained model to generate the corresponding TS structures and output

them in standard molecular coordinate file formats (e.g., XYZ).

(4) Prediction Evaluation: Model outputs will be compared against true TS structures

using geometric error (RMSE). Lower error indicates higher prediction accuracy.

(5) Result Submission: Submit complete prediction results, model code, and

documentation to facilitate automatic scoring and expert review by the organizers.

The scope of the task is explicitly limited to “predicting three-dimensional transition

state structures from reactants and products.” It does not involve reaction type classification,

pathway search optimization, or electronic structure analysis, ensuring that participants focus

on the construction and optimization of structure prediction algorithms themselves.

4. Dataset and Data Description

The training data used in this competition comes from publicly available chemical

reaction structure datasets (Transition1x). The test data is self-collected. All data sources are

legitimate and compliant, and widely used in frontier research on machine learning potential

energy surfaces and reaction pathway modeling.

4.1 Data Types and Scale

(1) Data Type: Numerical three-dimensional structural data, including atomic

coordinates of reactants, products, and transition states.

(2) Data Structure: Each reaction folder contains a reaction triplet (reactant, transition

state, product). Each structure is represented in the standard XYZ file format, which includes

atom types and their corresponding 3D coordinates.

(3) Data Scale: The training set contains 10,073 reactions, with provided structures of

reactants, products, and transition states. Example data can be downloaded from:

https://pan.baidu.com/s/1GSGUE4rnTZBnJVB5FQelSg?pwd=rdfy. The test set contains

1,000 reactions (500 for the preliminary round and 500 for the semifinal), where only reactant

and product structures are provided, and participants are required to predict the corresponding

transition state structures.

(4) Data Dimension: Covers multiple elements (e.g., C, H, O, N) and various types of

reactions.

4.2 Data Distribution and Coverage

(1) The dataset broadly covers typical reaction types in organic chemistry.

https://pan.baidu.com/s/1GSGUE4rnTZBnJVB5FQelSg?pwd=rdfy.
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(2) It includes both low-barrier and high-barrier reactions to ensure proper evaluation of

model generalization capability.

(3) Atom ordering is consistent, facilitating structural alignment and geometric error

calculation.

4.3 Data Preprocessing Description

To facilitate modeling, the dataset has undergone preliminary cleaning and

standardization, including:

(1) Atom order alignment: Ensuring one-to-one correspondence of atomic indices

among reactants, products, and transition states.

(2) Unit normalization: All coordinates are expressed in angstroms (Å).

(3) Format unification: Structural files are standardized in XYZ format for universal

readability.

(4) Anomalous data removal: Entries with failed convergence or incomplete structures

have been eliminated to improve data quality.

(5) Grouping instruction files: Each reaction is accompanied by an index file and

structural file path references, enabling rapid access and batch processing.

Participants may further perform feature engineering on this basis, such as molecular

graph construction, distance matrix extraction, or descriptor generation.

Notes:

(1) All data will be released together with the competition, including training set

structure files, test set input structure files, and baseline evaluation scripts.

(2) If participants introduce additional public data to enhance model training, the data

source must be clearly indicated, and compliance must be ensured.

5. Algorithm Design Requirements

This competition recommends participants to adopt supervised learning methods,

training models based on the provided triplet data of reactants, products, and corresponding

transition state structures. The algorithm should be able to learn the structural mapping

relationship between reactants and products from known samples and effectively predict the

transition state structures of unseen reactions in the test set.

5.1 Recommended Algorithm Types (not limited to)

(1) Graph Neural Networks (GNNs): Suitable for graph-based modeling of molecular

structures.

(2) Structure Generation Models (e.g., GANs, Diffusion Models): Can be used to

directly output 3D atomic coordinates.

(3) Potential Energy Surface (PES) Modeling Methods (e.g., SchNet, DimeNet,
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PhysNet): Model potential energy functions to derive transition states.

(4) Enhanced Methods Based on Reaction Path Search (e.g., NEB+ML, GEO-Predictor):

Assist in improving structural plausibility.

5.2 Algorithm Optimization Requirements. To ensure practicality and deployability,

participants should consider the following performance indicators when designing their

models:

(1) Prediction Accuracy: The core evaluation metric is the geometric error (RMSE)

between the predicted and ground-truth transition state structures; smaller errors indicate

better performance.

(2) Computational Efficiency: Lightweight model architectures are encouraged to reduce

computational cost during training and inference, supporting large-scale reaction screening.

(3) Memory and Resource Utilization: Model parameter size, GNN depth, and

dimensionality of 3D structural representations should be reasonably controlled to improve

runtime efficiency.

(4) Generalization Ability: Models should possess strong generalization capability

across different reaction types, avoiding overfitting to specific structures.

5.3 Algorithm Development Suggestions

(1) Energy or force can be introduced as auxiliary loss functions in structural prediction.

(2) Incorporating physical knowledge (e.g., bond length constraints, reaction path

smoothness) is encouraged to improve prediction rationality.

(3) Customized distance losses and coordinate alignment algorithms can be used to

improve structural accuracy.

(4) Batch prediction and rapid structure construction during inference are recommended

to support large-scale evaluation.

Participants are required to submit model code, documentation, and prediction results.

The model should be runnable in a standard computing environment and reproducible for the

test set prediction process.

6. Performance Metrics Requirements

6.1 Root-Mean-Square Deviation (RMSD)

(1) Definition: Measures the overall geometric deviation between the predicted

transition state structure and the ground-truth structure, with rigid alignment applied to

eliminate translational and rotational errors.

(2) Calculation Method: The rmsd tool (https://github.com/charnley/rmsd) is used, with

rigid alignment performed via the Kabsch algorithm.

Target Value: The RMSD of submitted models must surpass the baseline results; the

https://github.com/charnley/rmsd
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lower the value, the better.

6.2 Success Rate

(1) Definition: Measures the proportion of reactions in the test set for which the

predicted transition state structures fall within an acceptable geometric error range, reflecting

the reliability and practicality of the model.

(2) Calculation method: For each reaction in the test set, if the RMSD of the predicted

structure is ≤ 0.5 Å, it is deemed a “successful prediction.” The success rate is defined as the

percentage of successful predictions relative to the total number of reactions in the test set

(500).

(3) Target Value: The prediction success rate of submitted models must surpass the

baseline results; the higher the value, the better.

6.3 Inference Time

(1) Definition: Measures the efficiency of predicting a single transition state structure,

reflecting the feasibility of practical applications.

(2) Calculation Method: On a standard computing environment, compute the average

time (in seconds per reaction) required for the model to predict the transition state structure

from given reactant and product structures.

(3) Target Value: The shorter the inference time per reaction, the better. Participants are

encouraged to optimize efficiency through model compression, parallel computation, and

other techniques.

7. Functional Requirements

The solutions submitted by participants must implement the following core

functionalities, covering the system requirements defined by the competition task:

7.1 Data Preprocessing and Feature Engineering

(1) Support for multiple input formats: Read reactant/product structures (XYZ format)

and extract basic information such as atom types, coordinates, and chemical bonds.

(2) Feature generation: Compute geometric features (bond lengths, bond angles, centroid

coordinates), graph-based features (atom–bond graph representation), or physicochemical

descriptors (e.g., SOAP, molecular fingerprints, Coulomb matrices).

7.2 Machine Learning Model Construction and Training

(1) Model implementation: Build transition state prediction models based on machine

learning methods (e.g., autoregressive models, diffusion models, machine-learning potential

energy surfaces), supporting the mapping from reactant–product features to transition state

coordinates.

(2) Training workflow: Include data loading, model training, validation set evaluation
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(e.g., stratified validation by reaction type), and support saving trained model weights.

(3) Configurable parameters: Allow adjustment of model hyperparameters (e.g., learning

rate, batch size), number of training epochs, and feature selection strategies.

(4) Evaluation criteria: Training logs should show steadily decreasing loss values, and

the validation set RMSD should be ≤ the baseline model performance.

7.3 Transition State Structure Prediction

(1) Input: Structure files of reactants and products (XYZ).

(2) Output: Predicted transition state structure files (XYZ format), including atom types

and 3D coordinates. File names must follow the specified convention (e.g., ts_pred.xyz).

(3) Evaluation criteria: Output XYZ files must conform to the required format (number

of atoms, coordinate precision). Both the average RMSD and success rate must outperform

the baseline model. The prediction time for a single reaction must satisfy the inference time

requirement under the specified hardware, and batch processing time must scale linearly with

the number of reactions (no abnormal delays).

7.4 Reproducibility and Documentation

(1) Code completeness: Provide complete runnable code (including data preprocessing,

model training, and prediction scripts), supporting one-click deployment of dependencies

(e.g., via requirements.txt).

(2) Model documentation: Describe the data preprocessing workflow, feature

engineering details, model architecture diagram, and key parameters. Provide example run

commands and explanations of output files.

(3) Evaluation criteria: Code should be free of syntax errors, example outputs must

match expected results, and any dependency conflicts should be resolvable via the provided

documentation.

8. Development Environment

8.1 Software Environment

(1) Operating System: Linux

(2) Programming Language: Python 3.x (must be compatible with scientific computing

libraries and machine learning frameworks)

(3) Development Tools: No restrictions

(4) Relevant Libraries and Frameworks: PyTorch, TensorFlow, RDKit, OpenBabel,

Scikit-learn, etc.

8.2 Hardware Environment

(1) CPU Model: No restrictions

(2) Memory: 32 GB RAM or above
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(3) GPU Model: Any model supporting CUDA

9. Evaluation Criteria

9.1 Indicator Weights

Indicator

Category
Specific Metric Weight Description

Core Metrics

Root-Mean-Square

Deviation (RMSD)
40%

Reflects the accuracy of

structural prediction

Prediction Success

Rate
30%

Measures the proportion

of reactions within

acceptable error

Inference Time 10%

Indicates the efficiency

of the model in practical

applications

Additional

Factors

Code Standardization

and Reproducibility
10%

Evaluates the quality of

engineering

implementation

Report Quality and

Innovativeness
10%

Assesses clarity of

methodological

description and degree of

technical advancement

9.2 Scoring Details

9.2.1 Root-Mean-Square Deviation (RMSD, 40 points)

RMSD ≥ 0.5 → 0 points

0.2 < RMSD < 0.5 → 40 − ((RMSD − 0.2) / 0.3) × 40 points

RMSD ≤ 0.2 → 40 points

9.2.2 Prediction Success Rate (30 points)

Score = Success Rate × 30 points

9.2.3 Inference Time (10 points)

Due to differing time scales across machine learning methods, this item will be judged

by experts via comparison with the baseline model under practical usage.

9.2.4 Code Standardization and Reproducibility (10 points)

Scoring Item Scoring Criteria

Code Structure Reasonable modular design with clear directory
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9.2.5 Report Quality and Innovativeness (10 points)

Scoring Item Scoring Criteria

Content

Completeness

Includes model architecture diagram, feature engineering

details, and explanation of alignment methods (4 points)

Depth of Analysis
Compares performance of different methods and discusses

sources of error (2 points)

Innovativeness
Proposes new model architectures or optimizes existing

methods (4 points)

Note: In the preliminary and semifinal stages, the total score is determined solely by the

Root-Mean-Square Deviation (RMSD) and the Prediction Success Rate, with a maximum

score of 70 points.

10. Problem-Solving Approach

10.1 Core Knowledge Points

10.1.1 Molecular Structure Representation and Feature Engineering

(1) Geometric features: Encoding spatial information such as atomic coordinates, bond

lengths/angles, and centroid alignment.

(2) Graph-based modeling: Representing molecules as atom–bond graphs and using

Graph Neural Networks (GNNs) to extract local and global features.

(3) Physicochemical descriptors: Generation and application of features such as SOAP,

ACSF, and molecular fingerprints.

10.1.2 Machine Learning and Deep Learning Models

organization (2 points)

Comments and

Documentation

Key algorithms are properly commented, and

parameter descriptions are complete (2 points)

Dependency Management
A complete requirements.txt is provided and the

environment is reproducible (2 points)

Scalability

Supports command-line parameter configuration

and allows easy replacement of model

components (2 points)

Result Reproducibility
Test results can be reproduced by following the

documentation steps (2 points)
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(1) Generative models: Applications of VAE and diffusion models for continuous

coordinate generation.

(2) Graph neural networks: Practical use of models such as GAT, GCN, and SchNet.

(3) Physics-inspired models: Integration of machine learning potential energy surfaces

(ML-PES), reinforcement learning (RL) with path search methods, and molecular dynamics

(MD).

10.1.3 Generalization Ability and Algorithm Optimization

(1) Data augmentation: Methods to improve model robustness, such as coordinate

perturbations and mixing of reaction types.

(2) Model compression: Knowledge distillation and lightweight network design to

balance accuracy and inference efficiency.

10.2 Basic Problem-Solving Approach

10.2.1 Data Processing: From Structures to “Computable Information”

(1) Core objective: Convert the 3D structures of reactants/products (XYZ files) into

features understandable by the model.

(2) Key idea: Extract molecular geometric features (e.g., interatomic distances, bond

angles) or graph-based features (molecules as graphs with atoms as nodes and bonds as

edges). By comparing structural differences between reactants and products (e.g., which

bonds break/form, how atomic positions change), the model can capture critical clues for

transition state prediction.

10.2.2 Prediction and Optimization: From Model Outputs to Usable Results

(1) Core objective: Ensure that the predicted structures are chemically reasonable and

output in standard formats (e.g., XYZ).

(2) Key steps: The model may directly predict atomic coordinates or predict structural

changes from reactants to the transition state (e.g., atomic displacements). Simple geometric

optimization or energy calculations (e.g., physics-based optimization methods) can be applied

to refine predictions and ensure structural validity.

10.2.3 Generalization Ability: Adapting Models to Unseen Reactions

(1) Core challenge: Test set reactions may differ from training data, requiring the model

to generalize effectively.

(2) Key strategies: Use diverse training data covering different reaction types, or apply

perturbations (e.g., slight structural modifications) to enhance robustness. Leverage transfer

learning by pretraining models on related tasks (e.g., molecular generation) and fine-tuning

them for transition state prediction.

11. References and Resources
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NeuralNEB— Neural networks can find reaction paths fast. IOPscience.

Optimal transport for generating transition states in chemical reactions. Nature Machine

Intelligence.

Machine learning transition state geometries and applications in reaction property

prediction. Theoretical and Computational Chemistry | ChemRxiv | Cambridge Open Engage.

Transition1x —A dataset for building generalizable reactive machine learning potentials.

Scientific Data.

Comprehensive exploration of graphically defined reaction spaces. Scientific Data.

12.Submission Requirements

12.1 Preliminary Round Submission Content and Requirements

12.1.1 Core Code Files

(1) Format: Python scripts, with a dependency configuration file (e.g., requirements.txt).

(2) Requirements: Must include data preprocessing and core logic for model training.

Code should contain key comments and allow reproducibility of the baseline model

construction and training process.

12.2.2 Model Files

(1) Format: Common machine learning framework formats (e.g., .pth for PyTorch).

(2) Requirements: Submit the trained baseline model, capable of reading test set data

and outputting transition state structure predictions.

12.2.3 Technical Report

(1) Format: PDF, following the provided template.

(2) Requirements: Provide a brief description of the data processing approach, rationale

for model selection, training strategy, and preliminary performance metrics (e.g., training set

prediction error). Emphasize innovativeness and feasibility.

12.2 Semifinal Submission Content and Requirements

12.2.1 Core Code Files

(1) Format: Python scripts, with a dependency configuration file (e.g., requirements.txt)

and a README file clearly describing module functions and execution commands.

(2) Requirements: Extend the preliminary round submission with model optimization

(e.g., hyperparameter tuning, algorithmic improvements) and post-processing logic.

12.2.2 Model Files

(1) Format: Same as in the preliminary round.

(2) Requirements: Submit models that meet the required performance thresholds on the

semifinal dataset, capable of reading test set data and outputting transition state structure

predictions.
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12.2.3 Technical Report

(1) Format: PDF, following the provided template.

(2) Requirements: Provide a detailed description of data augmentation strategies, model

training details (e.g., hyperparameter search methods), error analysis, and generalization

verification. Include visual comparison figures (e.g., overlay of predicted and ground-truth

structures).

12.3 Final Round Submission Content and Requirements

12.3.1 Full-Process Reproducible Project

(1) Format: Complete project package (including code, data preprocessing scripts,

model files, and execution scripts).

(2) Requirements: The entire workflow—from data processing to result output—must be

reproducible with one command in the specified environment. Provide detailed environment

configuration instructions.

12.3.2 Technical Report

(1) Format: PDF, following the provided template.

(2) Requirements: Provide a systematic exposition of technical innovations (e.g.,

theoretical foundations of algorithmic improvements), comparative analysis with

state-of-the-art methods, and validation of model generalization with real-world cases.

12.3.3 Defense Materials

(1) Format: PPT.

(2) Requirements: The PPT should distill the core technologies and achievements,

clearly presenting the research methodology, technical breakthroughs, and application value.

13. Contact Information

Competition Communication QQ Group: 956966549

Email: libowen990807@163.com

Official Registration Website: www.aicomp.cn

file:///Users/xingjiawei/Desktop/libowen990807@163.com
http://www.aicomp.cn
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Appendix: Competition Process andAward Setup

(1) Registration Stage

Participants complete registration on the official competition website, submit individual

or team information, and obtain the download link for the preliminary round dataset.

(2) Preliminary Round

Participants design algorithmic models using the training dataset provided by the

organizers and validate/debug their methods with the preliminary test set. During this stage,

the number of daily submissions is unlimited; however, the preliminary leaderboard is

refreshed once every hour.

(3) Semifinal (Provincial Competition) Stage

After the preliminary round, the semifinal stage begins, and the semifinal dataset

download link is released. Only teams that submitted valid results during the preliminary

round are eligible to advance. During the semifinal, participants use the provided dataset for

model debugging and submit inference results on the semifinal test data. The semifinal lasts 3

days, and each team may submit at most 2 results per day. The semifinal leaderboard is

refreshed once every hour.

(4) Semifinal (Provincial Competition) Results Announcement

The semifinal results are published on the official competition website. The award base

is determined by the number of teams entering the semifinal, and prizes are granted according

to the provincial competition award ratio (first, second, and third prizes, with provincial-level

award certificates issued). Submissions with algorithm performance below the baseline

reference score provided by the organizers are deemed invalid and will not be awarded.

Teams winning first and second prizes in the semifinal advance to the national final.

(5) Final (National Competition) Stage

1. Online Evaluation: Teams advancing to the final are ranked according to the semifinal

leaderboard. Based on the number of teams entering the final, and in accordance with the

national award ratio, a candidate list for the national first prize and the final award lists for the

national second and third prizes are determined (national-level award certificates issued for

second and third prizes).

2. Final Submission: Candidate teams for the national first prize must submit technical

documentation, algorithm code and model files, demonstration videos, and supplementary

materials within the specified deadline. No modifications or additional submissions are

accepted after the deadline.

3. Final Review: A professional review panel will reproduce and evaluate the
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submissions of the national first prize candidate teams. If any issues arise during the review,

participants may be asked to provide clarification.

4. Final Onsite Defense: Candidate teams for the national first prize must submit the

finalized technical documentation, algorithm code and model files, demonstration videos, and

supplementary materials within the specified deadline, and participate in the onsite defense at

the national final. The final ranking and award list for the national first prize are determined

based on both algorithm performance scores and onsite defense performance (teams failing to

attend the onsite defense are deemed to have forfeited the award). National first prize winners

are awarded certificates of honor.
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