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Competition 2: 4DMillimeter-WaveRadar andMonocularCameraFusionAlgorithm
1.Competition Background
Traditional 3D millimeter-wave radar point clouds are typically used as auxiliary

information for object detection because they are extremely sparse and lack critical
height information. The next-generation high-resolution 4D (3D spatial position + 1D
velocity) millimeter-wave radar offers higher resolution and the ability to measure
pitch/height angles, showing excellent potential for 3D object detection.However, due
to its recent market introduction, research on 3D object detection algorithms that fuse
4D radar point clouds with vision data is still limited. Existing 4D radar datasets are
scarce and mostly collected for long-distance scenarios.For this competition, a dataset
of vehicle-mounted 4D millimeter-wave radar and camera data in road environments
is provided. Participating teams are required to develop 3D object detection
algorithms based on radar-vision fusion using this dataset. The competition primarily
evaluates teams on their mastery and innovation in key techniques, including data
augmentation, radar-vision data alignment, and feature fusion.

2. Competition Application Scenarios
In the context of the rapid development of intelligent driving and autonomous

driving technologies, multi-sensor fusion has become key to enhancing vehicle
perception capabilities. 4D millimeter-wave radar and monocular cameras are highly
complementary sensors, each performing well under different conditions.
Millimeter-wave radar can provide reliable detection in adverse weather conditions
such as rain, fog, and snow, or in low-light environments. Monocular cameras, on the
other hand, provide high-precision image information in good weather and lighting
conditions. However, single sensors have limitations: millimeter-wave radar is
relatively weak in resolution and capturing fine details, while cameras may struggle
with long-range detection or in complex environments. By leveraging vision fusion
algorithms and artificial intelligence, it is possible to achieve accurate detection,
classification, and tracking of vehicles, pedestrians, obstacles, and other objects in
complex and dynamic environments, thereby enhancing the perception capabilities
and safety of autonomous driving systems.

3. Competition Tasks
Participants are required to use the high-resolution 4D millimeter-wave radar

dense point cloud dataset provided by the organizers to design and implement
artificial intelligence algorithms for automatic detection and classification of road
objects. The specific tasks include:
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(1) 3D Object Detection: Accurately locate the 3D positions and bounding boxes
of targets.

(2) Classification: Determine the category to which each detected target belongs.
4. Dataset and Data Description
4.1 Data Source
The data were self-collected on urban roads. The data collection platform is shown

in Figure 1. A high-resolution 4D millimeter-wave radar (OCULII-EAGLE) and a
camera (Intel RealSense D435i) are mounted at the center on top of the vehicle,
approximately 1.85 meters above the ground.To ensure the density of the 4D radar
point clouds and generate dense radar point clouds, the short-range mode was selected
during data collection. In this mode, as shown in Figure 2, the high-resolution 4D
millimeter-wave radar OCULII-EAGLE has a detection range of 0–25 meters, an
azimuth angle range of -56.5° to 56.5°, a pitch angle range of -2.5° to 22.5°, and
collects 12 frames of point clouds per second.

Figure 1 Data Collection Platform

Figure 2 High-Resolution 4D Millimeter-Ware Radar field of View illustration
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The collected 4D millimeter-wave radar point cloud data are in the format [range,
azimuth, elevation, Doppler, power, x, y, z], where “power (dB)” represents the
signal-to-noise ratio of the detection signal, “Doppler” indicates the relative velocity
between the target and the radar, and “range, azimuth, elevation” are the polar
coordinates, while “x, y, z” are the Cartesian coordinates calculated from the polar
coordinates. The Intel RealSense D435i camera has a field of view (FOV) of 69° ×
42° (H × V), a resolution of 640 × 480 pixels, and captures images at 30 frames per
second.

4.2 Parameter Calibration
Sensor parameter calibration is a fundamental requirement to ensure the

coordinated operation of multiple sensors in autonomous driving systems. Proper
calibration guarantees that data collected from different sensors can be accurately
aligned within the same coordinate system, providing a consistent perceptual basis for
the perception system. This includes determining the internal mapping relationships
of sensors (intrinsic calibration), such as camera focal length and distortion
parameters, as well as determining the transformation relationships between sensors
and other coordinate systems (extrinsic calibration), for example, the relative position
and orientation between the camera and the 4D millimeter-wave radar. The accuracy
of calibration directly affects the system’s understanding of the surrounding
environment and the reliability of its decision-making.

To ensure stable and precise radar-vision fusion, parameter calibration between
the 4D millimeter-wave radar and the camera is required. As shown in Figure 1 of the
data collection platform, the 4D radar and the camera use different coordinate systems.
In this task, the 4D radar coordinate system is treated as the world coordinate system,
with the vehicle’s forward direction as the positive X-axis, the Y-axis pointing to the
left of the forward direction, and the Z-axis pointing vertically upward.

Mapping the 4D radar point clouds from the world coordinate system to the
camera image’s pixel coordinate system requires three transformations. Ignoring
image distortion, the process first involves a rigid-body transformation from the world
coordinate system to the camera coordinate system, followed by a perspective
projection from the camera coordinate system to the image plane, and finally an affine
transformation from the image plane to the pixel coordinate system.
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Figure 3 Muiti-Sensor Coordinate System Relationship Model

As shown in Figure 3, to associate points in the 4D millimeter-wave radar point
cloud (in the world coordinate system) with pixel coordinates in the image, the points
must first be transformed into the camera coordinate system using rotation and
translation, as expressed in Equation (4.1).
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Here, R is the rotation matrix and T is the translation matrix. In this paper, we

align the camera and the 4D millimeter-wave radar by ensuring they share consistent
forward orientation, similar distance, and identical height through installation
adjustments. The spatial parameters between the two sensors are obtained through
manual measurement. Subsequently, these parameters are manually fine-tuned by
comparing the projection of key target point clouds from multiple frames with
corresponding image objects. Finally, the calibrated extrinsic parameter matrix is
obtained as follows:

� �
0 1 =

0 −1 0 −0.25
0 0 −1 0.4
1 0 0 −0.25
0 0 0 1

After obtaining points ��(��, ��, ��) in the camera coordinate system, perspective
projection is applied. By translating the origin to the top-left corner, the pixel
coordinates � �, � can be obtained. The matrix formula is as follows:
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Here, ��, ��is the pixel distance for origin translation,�� = �/��, �� = �/�� , and

� are the focal lengths, and ��, �� is the physical width of a single pixel. �

represents the intrinsic matrix. We use the standard intrinsic matrix obtained from the
camera's factory calibration as our conversion intrinsic matrix:

� =
605.6403 0.0 319.2964 0.0

0.0 605.6746 235.4414 0.0
0.0 0.0 1.0 0.0

Combining formulas (4.1) and (4.2), the conversion relationship between the
world coordinate system of the 4D millimeter-wave radar point cloud and the pixel
coordinates of the camera image is obtained as follows:
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Based on this, we establish a transformation matrix that relates the 4D

millimeter-wave radar to the image. Through this equation, the point cloud can be
projected onto the image plane.

4.3 Data Scale
The preliminary round provides a total of 6,551 sample frames, with 5,169 frames

in the training set for participants to train their algorithms. The validation set is
self-divided by participants for model tuning and performance evaluation, and the test
set contains 1,382 frames for final result assessment. The semi-final round will
provide a different test set from the preliminary round, while the training set remains
the same, and the test set still contains 1,382 frames. Sample data can be accessed at
https://pan.baidu.com/s/1X-1rxmZ5SQl5OnYeIPZEEA?pwd=q6px, and the official
dataset will be available for download after registration.

4.4 Data Format
A total of over 10,000 radar point cloud frames and a corresponding number of

image frames were collected. From these data, multiple consecutive-frame scenes
were selected to form the dataset samples, and 7,933 key frames were manually
annotated. All objects were labeled with class, 3D bounding box, rotation, and ID, and

https://pan.baidu.com/s/1X-1rxmZ5SQl5OnYeIPZEEA?pwd=q6px
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the annotations were converted into the KITTI label format, as shown in Figure 4. The
annotated objects include Car (small car), Cyclist, and Truck. Pedestrians were not
annotated due to the sparse and hard-to-identify point clouds.

Figure 4 Data Annotation Illustration

As shown in Figure 5, the DRadDataset dataset is organized with the ImageSets
folder containing the sample splits, the training folder including both training and
validation data, and the calib folder holding the calibration files mentioned in Section
(II). The image_2 folder contains the captured camera images, label_2 contains the
manually annotated labels, and velodyne contains the high-resolution 4D
millimeter-wave radar point cloud files in binary .bin format. The image, point cloud,
and label files are linked through a unified file name indexing system, ensuring
correct correspondence across all modalities.

Figure 5 Data Organization Type

Calib Folder Description: The calibration follows the KITTI dataset format. P0-P3
are the camera intrinsic matrices. In this dataset, only one camera is used, so only P0
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is valid, while P1-P3 can be ignored. P0 corresponds to the intrinsic matrix K
mentioned in Section (II) Parameter Calibration, obtained from the camera factory
settings. R0_rect is the rectification matrix of the camera, which is approximately an
identity matrix and can be ignored. Tr_velo_to_cam is the extrinsic matrix
transforming points from the radar coordinate system to the camera coordinate system,
calibrated according to the actual placement of the radar and camera. Tr_imu_to_velo
is an identity matrix and can also be ignored.

Label Folder Description: The label files are in .txt format, with each line
representing one annotated object in the image. Each object annotation follows the
standard KITTI dataset format for 3D object detection labels, specifically:[type,
truncated, occluded, alpha, bbox_left, bbox_top, bbox_right, bbox_bottom, height,
width, length, x, y, z, rotation_y].

1.type: The object category. Common categories include Car, Pedestrian, Cy
clist, etc.

2.truncated: The level of truncation of the object, with values in the range
[0, 1], indicating whether the object is partially cut off. 0 means the object is
fully visible, while 1 means the object is heavily truncated.

3.occluded: The level of occlusion of the object, with values in the range
[0, 3]: 0 means the object is fully visible, 1 means partially occluded, 2 mean
s largely occluded, and 3 means fully occluded.

4.alpha: The observation angle of the object, representing the angle between
the object and the camera’s coordinate system.
5.bbox_left, bbox_top, bbox_right, bbox_bottom: The bounding box coordina

tes of the object in the image, corresponding to the left, top, right, and bottom
pixel positions.
6.height, width, length: The 3D dimensions of the object (height, width, len

gth).
7.x, y, z: The 3D position coordinates of the object in meters.
8.rotation_y: The object’s orientation, representing the rotation angle of the

object in 3D space, typically around the y-axis, measured in
5. Algorithm Design Requirements
5.1 Model Type
To encourage innovation and improve detection accuracy, participants are

encouraged to adopt deep learning algorithms for modeling. For example, voxel- or
pillar-based 3D object detection networks (such as PointPillars or SECOND),
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point-based detection networks (such as PointRCNN), or hybrid methods combining
points and voxels (such as PVRCNN) can be employed. For multimodal fusion,
participants may integrate mainstream visual object detection models (such as YOLO
or Faster R-CNN) and explore cross-modal feature fusion methods based on
Transformers. Specifically, Sparse CNNs can be used to extract geometric features
from 4D millimeter-wave radar point clouds, while CNNs or Vision Transformers can
be applied to extract semantic features from monocular images. Subsequently,
efficient multimodal fusion modules can be designed, such as BEV (bird’s-eye view)
spatial feature alignment and attention-based fusion mechanisms, to achieve accurate
detection and classification of various road objects.

5.2 Innovation
Participants are encouraged to propose innovative fusion strategies or improve

existing algorithms to enhance detection accuracy and robustness. For example, they
may design novel feature fusion modules capable of fully capturing multi-scale
contextual information from sparse 4D millimeter-wave radar features, while also
performing feature enhancement. Alternatively, effective solutions can be explored for
the fusion of dense point cloud features from high-resolution 4D millimeter-wave
radar with image features, in order to improve the accuracy of 3D object detection.

5.3 Scalability
The algorithm should possess strong scalability, capable of running efficiently on

computing devices with different configurations, while maintaining stable
performance when processing large-scale data. For instance, it should operate
effectively on both standard workstations and cloud servers, and its performance
should not degrade noticeably as the data volume increases.

6. Performance Metrics Requirements
6.1 Key Metrics
1.IoU (Intersection over Union): Measures the overlap between the model’s

detected bounding box and the ground truth. It is calculated as the ratio of the area of
intersection to the area of union between the predicted and true boxes. IoU ranges
from 0 to 1, with values closer to 1 indicating a higher match between the detection
and the actual target. IoU is widely used in evaluating and optimizing object detection
algorithms, especially in tasks requiring precise localization, such as autonomous
driving and object recognition.

2.AP (Average Precision): An important metric for evaluating object detection
performance. It combines Precision and Recall, measuring the area under the
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Precision-Recall (P-R) curve to assess the model’s detection performance for different
classes. A higher AP indicates better performance for a given class. In multi-class
detection tasks, AP is calculated for each class, and the mean of all classes’AP values
gives the mAP (mean Average Precision).

6.2 Secondary Metrics
Model Size: The size of the trained model file, which reflects the model’s

complexity and storage requirements. A smaller model size indicates lower
complexity, reduced storage cost, and easier deployment, making it more suitable for
application across different devices and environments.

7. Functional Requirements
7.1 Accuracy
The algorithm must achieve high accuracy in detecting vehicle positions, marking

3D bounding boxes, and performing classification, ensuring precise recognition of
targets with sparse point clouds, such as cyclists, while minimizing missed detections
and false positives. For vehicle classification, the predicted labels should closely
match the ground truth. On the test set, the Intersection over Union (IoU) for 3D
object detection should reach at least 0.5.

7.2 Reliability
The algorithm should operate stably and produce reliable results when processing

4D radar point cloud frames collected under varying quality and different scenarios.
Even in the presence of noise or other disturbances in the point clouds, the algorithm’s
performance should not fluctuate significantly, maintaining accurate and consistent
3D object detection and classification for vehicles.

7.3 Interpretability
The algorithm should possess a certain degree of interpretability, providing

relevant personnel in the autonomous driving field with explanations for the 3D
vehicle detection and classification results. For example, visualization techniques can
be used to highlight the key regions the model focuses on when identifying objects, or
feature importance analysis can be provided to indicate which features the model
relies on for 3D object detection and classification. This helps users understand the
algorithm’s decision-making process and enhances trust in the results.

7.4 Real-time performance
In autonomous driving scenarios, decision-making latency is critical. The

algorithm must meet certain real-time requirements: the time for performing 3D
object detection and classification on a single sample frame should be controlled
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within [150 milliseconds]. This ensures that the autonomous driving system can
quickly perceive and understand road conditions and obstacles, providing key
perception data to downstream planning and decision-making modules for rapid and
safe actions.

7.5 Robustness
The algorithm should demonstrate strong robustness to anomalies, missing data,

and other irregularities. Even when some point cloud data contain minor labeling
errors, missing points, or clutter interference, the detection and classification results
should remain reliable, ensuring that small imperfections in the data do not cause
significant performance degradation.

7.6 Multimodal Fusion Capability
If participants adopt a multimodal data fusion approach (e.g., combining radar

point clouds and visual images), the algorithm should effectively integrate different
types of data and, after fusion, significantly improve the accuracy and reliability of
3D object detection, demonstrating efficient utilization of information from multiple
sources.

8. Development Environment
8.1 Programming Language
Python, it is recommended to use Python 3.6 or above due to its rich support for

scientific computing libraries and deep learning frameworks.
8.2 Deep Learning Framework
It is recommended to use TensorFlow 2.x or PyTorch 1.x. Both frameworks are

widely used in the field of deep learning, offering efficient computation and a rich set
of APIs, which facilitate model construction, training, and deployment.

8.3 Computing Resources
Participants can use either local workstations or cloud computing platforms for

development and training. Local workstations should be equipped with NVIDIA
GPUs (e.g., GTX 10 series or above, or RTX series) to accelerate deep learning
computations. Cloud platforms such as Alibaba Cloud Tianchi, Tencent Cloud TI, or
Baidu AIStudio offer a variety of computing configurations, allowing participants to
flexibly choose resources based on their needs.

8.4 Dependency libraries
Participants are required to install libraries for data processing and visualization

such as NumPy, Pandas, and Matplotlib; libraries for point cloud processing such as
Open3D and PointNet; as well as relevant libraries corresponding to the chosen deep
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learning framework, such as Keras for TensorFlow or TorchVision for PyTorch.
9. Evaluation Criteria
9.1 Input Data Format Requirements
Participants’ algorithms should be able to correctly read the DRadDataset dataset

provided by the organizer, which is organized similarly to the widely used KITTI
dataset for autonomous driving algorithm training and evaluation. For the PNG image
files, the algorithm must be able to parse and extract the contained image information.
For the label files, it should accurately extract all manually annotated object
information, including class, 3D bounding box, rotation, and ID. For the calibration
parameter text files in the calib folder, the algorithm must accurately extract the
transformation matrices describing the relationship between the 4D millimeter-wave
radar and the camera images. For the high-resolution 4D millimeter-wave radar point
cloud files in the velodyne folder, which are in binary .bin format, the algorithm must
correctly parse and extract all contained point cloud information.

9.2 Output Data Format Requirements
The output format should be consistent with the label_2 folder of the training

dataset, containing a prediction file (.txt) for each test sample. Each prediction file
must have the same file name as its corresponding input data file (for example,
000001.txt corresponds to 000001.png/000001.bin).

Each prediction file should have one line per detected object; if no objects are
detected, the file should be empty. Each line contains 16 fields, separated by spaces,
in the following fixed order:

Field Number Field Name Data Type Unit / Range

1 Class String Car / Cyclist / Truck

2 Truncation Float [0, 1]

3 Occlusion Level Integer 0 / 1 / 2 / 3

4 Observation Angle Float [-π, π]

5–8 2D Bounding Box Float Pixel coordinates

9–11 3D Dimensions Float Meters

12–14 3D Center Float Meters

15 Rotation Angle Float [-π, π]

16 Detection Score Float [0, 1]

Example file content:
For instance, detecting one car and one cyclist:
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9.3 Score Calculation Formula
The scores will be calculated by comparing the algorithm’s output results with the

ground-truth annotations, using performance evaluation metrics such as IoU and mAP.
The final score is obtained by a weighted summation of these metrics.

9.4 Valid Score
A final score above 40 is considered a valid result, with the threshold of 40

ensuring that the object detection algorithm has practical applicability. The number of
teams with valid scores serves as the basis for award allocation.

10. Problem-Solving Approach
10.1 Data Preprocessing
Perform filtering on the point cloud data to remove background noise points while

retaining foreground target points (such as vehicles, pedestrians, cyclists, etc.),
reducing interference from irrelevant points and enhancing the point density in target
regions. Then, divide the sparse point cloud into regular 3D voxel grids to form a
structured representation, where each voxel is a fixed-size cube, reducing
computational complexity while preserving spatial geometric information. For images,
apply data augmentation techniques such as rotation, scaling, and flipping to expand
the training dataset and improve the model’s generalization ability. Additionally,
image pixel values can be normalized.

10.2 Feature Extraction
Use sparse convolutions to process the voxelized point cloud and extract 3D

sparse voxel features. Design combinations of different sparse convolution layers and
pooling layers to significantly reduce computational complexity and improve
efficiency when handling 3D sparse data. For visual image processing, leverage the
powerful feature extraction capability of convolutional neural networks (CNNs) to
capture high-level semantic information. Map both point cloud and visual image
features into the BEV (Bird’s Eye View) space for fusion, generating unified BEV
fused features. This approach simplifies height information and reduces
computational complexity while preserving scale consistency and 3D geometric
information.

10.3 Model Training
Select an appropriate deep learning framework (such as TensorFlow or PyTorch)

to build the model, and set reasonable training parameters, including learning rate,
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number of iterations, and batch size. During training, use cross-validation to evaluate
and fine-tune the model with the validation set data, helping to prevent overfitting.

10.4 Model Fusion and Optimization
You can try fusing multiple models with different architectures or trained at

different stages, for example, using voting or weighted averaging to combine their
predictions, thereby improving the overall accuracy. At the same time, optimize the
models based on performance metrics, such as adjusting the model architecture or
increasing the training data size.

11.Reference Resources
11.1 Books
1.Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville — This

book systematically introduces the fundamental concepts, model architectures, and
training methods of deep learning, providing substantial help in understanding and
applying neural networks.

2.Deep Learning with Python by François Chollet — Through numerous code
examples, this book explains in detail how to develop deep learning models using
Python and the Keras framework, making it suitable for beginners to quickly get
started.

11.2 Online courses
1.Deep Learning Specialization on Coursera, taught by Andrew Ng — This course

covers multiple key areas of deep learning, including neural network fundamentals,
convolutional neural networks, and recurrent neural networks, offering rich content
with strong practical applications.

2.Introduction to Artificial Intelligence on edX — This course provides
foundational knowledge in artificial intelligence and machine learning, including
algorithm principles, model training, and application cases, helping participants build
a comprehensive knowledge system.

11.3 Academic papers
Search academic databases for the latest research papers on 3D object detection

from point clouds, such as “PointRCNN: 3D object proposal generation and detection
from point cloud”, to understand the cutting-edge technologies and methodologies in
this field.

Follow papers published in reputable AI conferences (e.g., AAAI) to keep track of
the latest research trends and innovative developments.

12.Submission Requirements
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12.1 Algorithm Code
Submit the complete algorithm code, including all stages such as data

preprocessing, model training, and prediction inference. The code should be written in
Python and follow the PEP8 coding standards, with clear comments and
documentation to facilitate understanding and execution by the reviewers.

12.2 Technical Report
Submit a detailed technical report, including the algorithm design rationale, model

architecture diagrams, experimental setup (such as training parameters and data
augmentation methods), performance analysis (detailed evaluation of primary and
secondary metrics), as well as the algorithm’s innovations and limitations. The report
should be in PDF format and contain no fewer than 3,000 words.

12.3 Model File
Submit the trained model files and provide instructions for loading and using the

model, including the required runtime environment and dependency libraries. The
model files should be able to run correctly in the specified test environment and
produce the prediction results.

13. Competition Process and Award Structure
13.1 Registration Phase
Participants should complete the registration on the official competition website,

submit their personal or team information, and obtain the download link for the
preliminary (initial) round dataset.

13.2 Preliminary Round Phase
Participants use the training dataset provided by the organizers to design their

algorithm models and utilize the preliminary round test set for validation and
debugging of their methods. During the preliminary round, participants can submit
results an unlimited number of times per day, but the preliminary leaderboard is
updated every hour.

13.3 Semi-Final Round Phase
After the preliminary round ends, the competition enters the semifinal stage,

during which the download link for the semifinal dataset is made available. Only
teams that submitted valid results in the preliminary round are eligible to participate
in the semifinals. During this stage, participants use the semifinal dataset provided by
the organizers to fine-tune their algorithm models and submit inference results on the
semifinal test data. The semifinal stage lasts for three days, and each team is allowed
a maximum of two submissions per day. The semifinal leaderboard is updated every
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hour.
13.4 Announcement of Semi-Final Results
The semifinal results are published on the competition’s official website. The

number of teams participating in the semifinals serves as the base for awarding prizes.
First, second, and third prizes for the semifinals are determined according to the
provincial competition’s prize ratios (certificates are awarded for these prizes). During
the evaluation process, any team whose submitted algorithm performance falls below
the baseline reference score provided by the organizers will be considered to have an
invalid result and will not receive an award. Teams winning first and second prizes in
the semifinals advance to the national finals.

13.5 Final Stage
1.Online Evaluation of the Finals: Teams advancing to the finals will be evaluated

based on the semifinal leaderboard. Using the number of teams entering the finals as
the prize base and following the national competition’s prize ratio, the list of
candidates for the national first prize and the winners of the national second and third
prizes will be determined (certificates will be issued for the second and third prizes).

2.Submission of Final Works: Candidates for the national first prize must submit,
within the specified time, their technical documents, algorithm code, model files,
demonstration videos, and supplementary materials. No modifications or additions
will be accepted after the submission deadline.

3.Fiinal Review Stage: A professional review team will reproduce and verify the
results of the submissions from the national first prize candidates. During the review,
participants may be asked to provide explanations if any issues arise.

4.Offline Defense of the Finals: Candidates for the national first prize must submit
their finalized technical documents, algorithm code, model files, demonstration videos,
and supplementary materials within the specified time, and participate in the offline
defense of the national finals. The final ranking and determination of the national first
prize winners will be based on algorithm performance scores and offline defense
scores. Teams that do not participate in the offline defense will be considered to have
forfeited the prize. Certificates of honor will be awarded to the national first prize
winners.

14. Other Instructions
14.1 Fairness
Any form of cheating is strictly prohibited, including but not limited to data

leakage, overlap between pretraining data and test data, plagiarism of others’ code, etc.
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Once detected, the participant will be immediately disqualified, and relevant
responsibilities will be pursued.

14.2 Intellectual Property Rights
Any form of cheating is strictly prohibited, including but not limited to data

leakage, overlap between pretraining data and test data, plagiarism of others’ code, etc.
Once detected, the participant will be immediately disqualified, and relevant
responsibilities will be pursued.

15. Contact Information
Competition communication QQ group: 730575503
Email: ymhhmy01@foxmail.com
Registration website: www.aicomp.cn

http://www.aicomp.cn
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